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Model-based/Multivariate Control 
 There are many examples of process control challenges in 
the semiconductor industry when direct measurement of a 
process critical physical phenomenon is not possible or cost 
prohibitive, e.g. direct plasma density measurement. Control 
techniques in such cases rely on the characterization of 
“process window” being defined and maintained during wafer 
processing by a combination of other indirect control loops. 
The limitation of such control types stems from the fact that 
different control loops and their deviation from the optimum 
have different impacts on critical process parameters also 
called critical dimension or CD. In other words, the multi-
dimensional “process window” has a complex shape and can 
be more forgiving for deviations in one direction and highly 
restrictive in the other.  
 
 Traditional control architecture assumes independent 
control loops for pressure, temperature, gas flow, RF power, 
etc. It is virtually impossible to have model based control in 
such an architecture, since it requires multiple cross links 
between “control loops”.  
 
 The centralized architecture with a powerful multicore CPU 
along with a fast industrial network is a game changer for such 
control needs. There is plenty of computational power 
available on the central controller for complex and math-
heavy control algorithms. At the same time, the EtherCAT 
network provides a deterministic data highway for sensor data 
and actuator control. The ability to control remote devices 
with high data rate is especially important in semiconductor 
systems where some critical devices like RF generators and 
PVD plating power supplies are located away from the actual 
process tool and often on another floor in the fab building. 
 
 One simple but good example of model-based control is the 
multi-zone highly uniform temperature control of the wafer 
pedestal for lithography track tools. The temperature 
uniformity has to be maintained within 0.05-0.1 degree C 
across the silicon wafer at the 150-200 degree C level. 
Typically, heating pedestals with 4-6 circular heating zones 
are used. The challenge of control is in the thermal cross talk 
among resistive heaters. Also, the introduction of fresh, colder 
wafers on the pedestal results in highly dynamic temperature 
transient. Traditional temperature control methods do not yield 
very stable results. The answer is found in model-based 
control when heat generation and heat transfer from zone to 
zone and to wafer are all taken into account for calculating 
resulting control signals for zone SCR’s. The only way to 
implement model-based control for fast changing dynamic 
processes today is to design dedicated local controllers with a 
decent microprocessor and dedicated I/O onboard. It is quite 
possible to do it this way, but with the process chamber count 
per track system reaching few tens of units, it becomes very 
costly to have dedicated chamber controllers. It should be 
noted as well that this example is well-known and not overly 
complex in nature. 
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Fig. 9. EtherCAT-based Control Architecture 

  
 More complex model-based algorithms today would require 
a dedicated PC controller per process module, increasing the 
cost of this approach even further. It happens not because of 
the computational limitation of a modern PC controller, but 
because of the local I/O limitation out of a PC either due to 
high I/O count or unmanageable cumulative system electrical 
cabling, or both. The proposed new EtherCAT-based 
architecture with a centralized PC controller overcomes these 
limitations. For instance, it can handle multiples of multi-zone 
model-based temperature software control loops for the entire 
system out of a single PC controller and with reduced cabling.  
  
Process Control Synchronization/Measurement Artifact 
Rejection  
 There are many cases when two or more different control 
loops, or a control loop with a system event, need to be 
precisely synchronized either at the start or along their 
trajectory. There are also cases when, due to the mechanical 
layout of the system or the measurement nature, a control loop 
feedback sensor gets temporarily affected by another unrelated 
part of the system.  
 
 Example 1: Lamp power modulation relative to angular 
position of rotating wafer pedestal. The need here is to 
synchronize the lamp power controller with the encoder 
reading for the pedestal axis.   
 
 Example 2: The temperature read back from a wafer heater 
thermocouple gets temporarily affected by a scanning laser 
producing additional local heating waves in RTP applications. 
  
 These are just two simple examples. There are plenty more 
of such synchronization tasks that process control engineers 
struggle with balancing materials cost pressure with available 
off-the-shelf process control solutions. EtherCAT networking 
virtually eliminates such challenges via its speed and 
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